skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Mutangana, Jean"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
  2. We investigate secure degrees of freedom (SDoF) of a single-input single-output (SISO) wiretap channel with a single helper without channel state information at the transmitters (CSIT). Wireless communication systems inherently suffer from intersymbol interference (ISI) due to channel dispersion. In this paper, we propose a novel blind cooperative jamming scheme that exploits the ISI heterogeneity to achieve positive SDoF, even without any CSIT. In order to achieve positive SDoF, the proposed approach only requires statistical properties of the ISI channel. In particular, we show that if LB is the effective ISI channel multipath link length towards the legitimate receiver (Bob) and LE is the link length towards the eavesdropper (Eve), a positive SDoF of LB-LE is achievable. To the best of our 2(LB -1) knowledge, this is the first work that exploits ISI link length heterogeneity to achieve positive secure degrees of freedom. 
    more » « less
  3. We consider the multiple-input multiple-output (MIMO) wiretap channel with intersymbol interference (ISI) in which a transmitter (Alice) wishes to securely communicate with a receiver (Bob) in presence of an eavesdropper (Eve). We focus on the practically relevant setting in which there is no channel state information (CSI) at Alice about either of the channels to Bob or Eve, except statistical information about the ISI channels (i.e., Alice only knows the effective number of ISI taps). The key contribution of this work is to show that even with no CSI at Alice, positive secure degrees of freedom (SDoF) are achievable by carefully exploiting a) the heterogeneity of the ISI links to Bob and Eve, and b) the relative number of antennas at all the three terminals. To this end, we propose a novel achievable scheme that carefully mixes information and artificial noise symbols in order to exploit ISI heterogeneity to achieve positive SDoF. To the best of our knowledge, this is the first work to explore the idea of exploiting ISI channel length heterogeneity to achieve positive SDoF for the MIMO wiretap channel with no CSI at the legitimate transmitter. 
    more » « less